人工智慧挺進醫療前線 FPGA需求前景看好

作者: 黃繼寬
2020 年 12 月 03 日

利用人工智慧(AI)對醫療資料進行輔助判讀,讓醫護人員能更快針對病患的狀況進行處置,是未來醫療產業的發展趨勢之一。但對於應用在醫療現場的硬體設備而言,如何在兼顧種種醫療設備特有的規格需求前提下,將設備內建的運算能力拉高到可以執行複雜推論的水準,是相當大的技術挑戰。現場可編程閘陣列(FPGA)在這個快速成長的垂直市場上,找到切入的機會。

賽靈思(Xilinx)醫療與科學事業部主管Subh Bhattacharya表示,醫療設備是該公司已經耕耘了相當多年的應用市場之一,從非常高單價的大型醫療設備,如手術機器人、電腦斷層(CT)、核磁共振(MRI)與正子斷層造影(PET),到中階的超音波、內視鏡,以及呼吸器、去顫器、病患監護儀等小型醫療設備,都會用到FPGA。

從CT、MRI等大型醫療設備,到病床邊的小型醫療器材,都是FPGA的應用市場

在AI技術的進步之下,許多醫療設備都希望藉由導入AI來加快醫療數據的判讀,或是對醫療數據進行更複雜的重構,讓資料用更符合人類感官的方式來呈現。例如在COVID-19疫情之下,有肺炎症狀的患者被送進醫院,醫護人員除了透過快篩來判斷病患到底是感染COVID-19,或只是一般肺炎感染,也可以靠病患的胸部X光影像來進行診斷。賽靈思近期就與Spline.AI、亞馬遜AWS合作,展示了一套利用賽靈思Zynq Ultrascale+ MPSoC作為邊緣裝置,可對肺部X光影像進行判讀的系統。

至於醫療數據的重構,比較常見的應用是超音波影像。早期的超音波影像是2D的,解析度也很低,沒有受過專業訓練的人員,基本上無法解讀超音波影像所代表的意義。但隨著機器學習技術的進步,利用演算法對超音波所產生的原始資料進行重新建構,已經可以將超音波影像轉換成3D影像,甚至是動態的4D影像,影像的解析度也比過去大幅躍升,讓醫護人員可以看到更多以往看不到的細節。

利用機器學習對超音波原始資料進行重新建構,讓超音波影像更加栩栩如生

AI能為醫療設備創造新的附加價值,並為醫療產業帶來巨大變革,是無庸置疑的。但醫療與AI的結合,也會帶來新的問題。舉例來說,醫療設備聯網所造成的資安疑慮,以及基於大數據分析的AI,要如何確保患者的隱私不會被洩漏,都是大哉問。此外,雖然大多數的專業醫療設備都有穩定的電源供應,但如果要把功耗動輒上百瓦的CPU或GPU整合到設備中,還是會對硬體設計造成挑戰。

醫療設備漫長的生命週期,則讓上述問題變得更加難解。IT世界的變化極為快速,駭客攻擊手法無時無刻都在翻新,即便在設備出廠時,已配備了最新的安全防護機制,三年、五年過後,仍難保這些「過時」的防護技術不會被駭客找到破解的辦法。

此外,CPU、GPU等用來執行AI演算法的標準晶片(ASSP),除了少數針對嵌入式應用設計的特殊型號外,產品生命週期通常只有兩到三年,但醫療現場所使用的設備,其生命週期往往數倍於此。若醫療設備開發商使用ASSP來實作產品,卻遇到元件斷貨,是十分麻煩的事情,因為醫療設備是受到高度監管的產品,如果產品設計出現重大變更,得重新取得主管機關的許可。

相較之下,FPGA基本上不會遇到這些問題。因為FPGA是可編程元件,即便應用產品已經部署到用戶端,還是能根據需求添加新的功能。此外,FPGA的產品生命週期跟大多數嵌入式應用產品相當,甚至還更長,因此客戶使用FPGA元件來實現應用,比較不會遇到元件停產的問題。

整體來說,FPGA跟醫療設備市場的需求,本來就有很高的契合度,因此對賽靈思而言,工業、科學與醫療(ISM)市場也一直是公司在通訊應用之外,主要的營收來源之一。而在賽靈思於2016年調整產品策略,將SoC與FPGA整合,推出Zynq SoC產品線後,因為產品更符合客戶需求,ISM市場的營收成長速度一舉拉高到14%左右,比2016年前的平均5%,增加約2.5倍。

展望未來,為了導入AI,醫療設備必然會對運算能力有更高的需求,但在此同時,設備開發商仍需要滿足醫療設備產業特有的種種規範跟要求,這會使得FPGA成為更具吸引力的選擇。

標籤
相關文章

FPGA火力支援 百度強化機器學習布局

2017 年 07 月 10 日

任務多元化促成非典型資料中心興起 FPGA角色更吃重

2021 年 03 月 15 日

SOM/加速器雙管齊下 賽靈思視覺AI方案亮相

2021 年 04 月 22 日

效能需求大幅增加 賽靈思看好自適應運算發展前景

2021 年 05 月 13 日

展現多角化企圖心 群創台美兩地展示多項新方案

2022 年 10 月 14 日

以資安催動商務PC換機潮 英特爾推出新一代vPro平台

2023 年 07 月 04 日
前一篇
太克宣布為大學工程教育推「掌握未來」計畫
下一篇
意法/廣達電腦攜手研發AR智慧眼鏡參考設計