克服毫米波傳輸耗損 5G RF前端朝模組/IC發展

作者: 吳栢妤
2018 年 09 月 12 日

目前6GHz以下頻譜擁擠且可用的頻段相當破碎,為獲取更大頻寬,使得5G開始朝毫米波(mmWave)發展。然而,毫米波訊號具衰減快、易受阻擋且覆蓋距離短等特性,使得5G基地台與終端開發面臨技術挑戰,也進而影響天線與射頻(RF)前端的設計。

ADI通訊基礎設施業務部中國區策略市場經理解勇指出,5G大規模天線陣列技術,使之對於射頻元件的整合度、頻寬與成本具更高的要求。5G頻段包含6GHz以下的低頻頻段與高頻毫米波頻段,支援的頻段比4G LTE多且複雜,因此,若要達到5G RF性能指標要求,將為相關RF元件製程與電路設計帶來了更大的挑戰。

以往RF前端多採用離散式元件(Discrete Components),透過印刷電路板(PCB)上的RF走線(Trace)連接收發器(TRx)、功率放大器(PA)、低雜訊放大器(LNA)及濾波器(Filter)等主被動元件。不過,隨著RF元件用量的提升,Qorvo產品行銷經理陳慶鴻指出,目前4G高階手機RF元件模組化已是必然的趨勢,而5G將更進一步加速元件整合的趨勢。其中,模組的型式包括封裝、低損耗板材SMT、軟板SMT等等,但不論採用何種方式都必須解決熱集中、高功率消耗的問題。

Anokiwave亞太地區銷售總監張肇強進一步說明,5G毫米波訊號易耗損、受干擾,為降低訊號在PCB傳遞過程中耗損,須將RF元件與天線整合在一起,以縮短RF走線。此外,隨著頻率變高,天線尺寸及每個天線間的距離都會大幅縮小,難以直接將離散式元件整合在天線間,因此須將RF元件加以整合。因應此趨勢,該公司利用矽製程技術將RF元件整合成四通道的毫米波IC,再將之與天線整合成模組,以解決訊號傳輸耗損問題。

此外,張肇強也談到,基地台散熱問題對於RF元件與天線設計是一大挑戰,過往毫米波雷達與波束成形等技術主要被運用在軍事國防,尺寸與成本都並非設計上的主要考量,因此若要運用相關技術實現商用基地台,除了要克服尺寸問題,基地台散熱所帶來的龐大成本也是一大問題。而Anokiwave也嘗試從封裝來改善散熱問題,其第一代IC採用QFN封裝技術,但考量塑膠封裝散熱效果差,因此第二代產品改採晶圓級晶粒尺寸封裝(WLCSP),在改善散熱問題的同時也能進一步縮小封裝體積。

標籤
相關文章

首款符合R15數據晶片亮相 三星加速5G終端問世

2018 年 08 月 17 日

聯發科mmWave終出手 高頻5G SoC料2021年底現身

2021 年 02 月 08 日

超日韓、趕歐美 台啟動新一輪5G技術布局

2015 年 06 月 15 日

高/低頻量測面臨新難題 國家儀器VST 2.0一手搞定

2016 年 07 月 15 日

深耕布局/策略精準 聯發科5G華麗轉身

2019 年 10 月 14 日

鐳洋啟用天線實驗室押寶低軌道通訊衛星商機

2022 年 03 月 08 日
前一篇
NXP攜手吉利汽車推動汽車產業升級
下一篇
巨量轉移技術流派眾多 壓印/流體/雷射各擅勝場