施耐德電機說明企業該如何慎用AI

2023 年 06 月 26 日

現正處於AI發展史上的關鍵時期,人類以前所未有的規模和速度在各個領域應用AI技術。隨著AI使用日漸普及,社會上興起關於倫理、責任、信任的討論,企業也需要在使用AI提升效率的同時做好風險管理。尤其現階段AI仍有諸多不完善之處,例如圖像辨識無法精確判別差異、以及招聘建議可能含有偏見等種種例子顯示人們並不能完全信任AI。

施耐德電機(Schneider Electric)建議企業在開發與使用AI時,應堅持遵守以下三項準則。

一、符合法律與規範。如施耐德電機擁有完善的網路安全政策,符合ISO/IEC 29147和ISO/IEC 30111的標準,同時積極參與AI法律的制訂,並承諾完全遵守相關法規;二、道德與信任守則。施耐德電機以最高標準的道德與信任,對減少碳排與降低能耗做出承諾,而將AI導入解決方案時,也以同樣高標準的道德與信任作為原則;三、內部政策與流程。施耐德電機擁有數位風險與數據管理主管負責AI專案,並成立RAI工作小組(Responsible AI Workgroup)跟進歐洲與美國最新的AI法案,持續關注倫理議題。

此外,上下文情境、數據來源、解釋方式都可能導致AI產生的結果有偏誤或偏見,這讓AI信任議題變得極為複雜。以機器學習(Machine Learning, ML)來說,就算風險與其他數位技術類似,但由於系統更加複雜,風險的規模便更大、更難避免、更難追蹤、更難解釋。若想克服這些挑戰,建立可信任的AI,有以下兩點關鍵。

一、專業知識和AI專家:AI應用將對人類產生深遠的影響,因此AI專家和數據科學家往往要擔任道德的守門員,他們檢測偏見、建立回饋循環(Feedback Loops)、檢驗運行異常以避免資料下毒攻擊(Data Poisoning)。在發展與應用AI時,企業必須選擇有價值的案例、挑選和清理數據、測試模型並控制其行為,這些都需要大量的專業知識與技術。若是出現異常,模型需要重新學習,以改善系統並避免使用特例數據而引發偏見。

二、風險預測:目前多數的AI監管都以風險預測為基礎,從設計階段開始,就必須考量錯誤或異常數據、網路攻擊可能導致的問題,並預測潛在後果。藉此,AI專家能及早採取相關動作來降低風險,例如改善訓練AI模型的資料庫、檢測數據漂移(運行時的異常數據變化),盡可能做好防護措施。另外,若AI的信心水準低於一定值,團隊也務必確保人類參與關鍵決策。

人們不能盲目相信AI,企業也要選擇具有專業知識且可信任的AI供應商合作,確保服務符合最高標準的倫理道德、數據隱私、網路安全。施耐德電機提供關鍵設施的解決方案,包含國家電網、核電廠、醫院、汙水處理等,因此深知道德與信任的重要性,作為一家可信任的企業、持續開發可信任的AI解決方案,並以同樣負責任的方式導入AI,確保服務與產品兼具安全、高效、可靠、公正、隱私。

標籤
相關文章

Arm新AI技術使物聯網終端裝置更智慧化

2020 年 02 月 14 日

愛德萬結盟PDF Solutions 打造Advantest Cloud

2020 年 08 月 18 日

ST嵌入式AI方案增加機器學習開發簡化功能

2022 年 11 月 30 日

IAR/Edge Impulse聯手提供AI/ML整合功能

2023 年 10 月 02 日

是德全新EDA軟體套件透過AI提升設計效率

2024 年 11 月 27 日

施耐德電機推出AI-Ready資料中心解決方案

2024 年 12 月 16 日
前一篇
伊雲谷助力國際大廠/國內業者媒合
下一篇
Bourns推出全新熱敏電阻系列產品