從雲端走向終端 AI推升ASIC市占率持續攀升 - 熱門新聞 - 新電子科技雜誌 Micro-electronics


熱門關鍵字:USB PD | 自駕車 | 藍牙5 | NB-IoT | AI

訂閱電子報

立刻輸入Email,獲取最新的資訊:


收藏功能:
分享報新知:
其他功能:

從雲端走向終端 AI推升ASIC市占率持續攀升

文‧侯冠州 發布日期:2019/03/28 關鍵字:OvumAI邊緣運算ASICSoC Accelerator

人工智慧(AI)風潮席捲全球,而為了加速AI應用普及,並降低雲端運算工作負載,實現更多的創新應用,邊緣運算需求與日俱增,AI開始從「雲端」走向「終端」,也因而推升ASIC需求;根據市調機構Ovum預估,2018~2025年,ASIC的市占率將從11%大幅增加至48%。

根據Ovum調查報告指出,在2016年,雲端(包含企業、數據中心等)為深度學習晶片的主要營收領域,占了80%。不過,到了2025年,此一比例將會改變,轉變成邊緣(Edge)占了80%,而雲端的比例則降為20%。這邊所指的邊緣意指終端設備,且以消費性產品為中心(而非小型伺服器或是路由器),包括行動裝置(手機、平板)、頭戴式顯示器(HMD),如AR/VR/MR、智慧音箱、機器人、無人機、汽車、安全攝影鏡頭等。

Tractica/Ovum研究總監Aditya Kaul表示,現今大多數的AI處理器,如GPU,多用於雲端伺服器、資料中心,以在雲端上進行AI訓練和推論。不過,隨著隱私、安全性需求增加,加上為了降低成本、延遲及打破頻寬限制等因素,分散式AI隨之興起,越來越多AI邊緣應用案例出現。例如蘋果的A12仿生晶片,其具備新一代「神經網路引擎」,以即時機器學習技術,改變智慧手機的使用體驗。

Kaul指出,簡而言之,AI從雲端轉向邊緣是現在進行式,當然目前AI在邊緣裝置上多還是以推論為主,而非訓練。不過隨著AI創新應用增加,有越來越多晶片商嘗試提升終端裝置處理器的運算效能,為的就是不用再傳送資料至雲端進行資料運算、推理和訓練。也因此,各式的處理器紛紛問世,像是CPU、FPGA、GPU、ASIC、NPU或SoC Accelerator等。

其中,ASIC的市占率可望隨著邊緣運算的需求增加而明顯攀升,從2018年的11%增加至2025年的52%。Kaul進一步解釋,ASIC之所以受到青睞,原因在於新興的深度學習處理器架構多以圖形(Graph)或Tensorflow為基礎架構;且上述提到AI邊緣運算受限於功耗和運算效能,因此多以推論為主,而非訓練。然而,若假設到2021年時,終端裝置將導入大量AI晶片,所需要的便是能在同一個晶片上進行推理和訓練,可因應分散式運算且又具低功耗的IC,因此ASIC需求將持續上揚,實現更多AI邊緣應用案例。

研討會專區
主題式電子報
熱門文章