AI異構運算工作負載有解 HBM/運算加速相得益彰 - 技術頻道 - 新電子科技雜誌 Micro-electronics


熱門關鍵字:電源模組 | SiC | 機器視覺 | GaN | 5G

訂閱電子報

立刻輸入Email,獲取最新的資訊:


收藏功能:
分享報新知:
其他功能:

AI異構運算工作負載有解 HBM/運算加速相得益彰

發布日期:2020/06/04 關鍵字:異構運算 Heterogeneous Computing FPGA HBM2 Interposer TSV RNN CNN

DDR記憶體架構演進落後運算加速創新,HBM2縮短訊號傳輸距離,增加記憶體頻寬提高系統性能,可為資料庫搜索與分析、機器學習推論提供加速功能。

近年來,異構運算(Heterogeneous Computing)逐漸興起,進而拓展了後摩爾定律時代在加速運算密集型工作負載方面的創新。當前資料中心產業中,普遍採用異構運算進行加速的工作負載種類繁多,包括人工智慧、即時視訊轉碼和基因組分析,而這些僅僅是其中的一部分。FPGA元件則為現代資料中心工作負載提供了靈活應變能力和運算加速能力。

然而,在很長的一段時間內,DDR記憶體架構的演進並不足以跟上運算加速領域的創新步伐。在過去十年中,雖然平行記憶體介面的頻寬性能得到改善,但進展依然緩慢;現在的FPGA支援的最大DDR4資料速率仍然只有2008年DDR3的兩倍左右。相比之下,自2008年以來,FPGA的運算能力卻提高了近八倍,而且隨著配備AI運算單元的元件推出,預計未來兩年內還會有更大的成長空間(圖1)。因此,在資料中心領域,記憶體頻寬與容量將成為眾多運算和記憶體頻寬密集型工作負載發展的主要限制因素。

》想看更多內容?快來【免費加入會員】【登入會員】,享受更多閱讀文章的權限喔!
研討會專區
主題式電子報
熱門文章