突破尺寸/功耗/效能天險 智慧推論晶片迎接新典範 - 市場話題 - 新電子科技雜誌 Micro-electronics


熱門關鍵字:電源模組 | SiC | 機器視覺 | GaN | 5G

訂閱電子報

立刻輸入Email,獲取最新的資訊:


收藏功能:
分享報新知:
其他功能:

突破尺寸/功耗/效能天險 智慧推論晶片迎接新典範

文‧Simon Solotko 發布日期:2020/06/13 關鍵字:AI機器學習MLMachine LearningPerceive ErgoTOPSTirias Research

晶片業者已研發出創新的運算架構,可實現低功耗、小尺寸解決方案,將AI推論智慧帶入更多邊緣裝置。

未來消費性裝置創新,須仰賴創建更智慧的新型聯網裝置。此一未來,會由更多具有近端機器學習推論能力的知覺型感測器(Perceptive Sensor)所推動。運用這些感測器並同時擴大推論網路,將能推動智慧型裝置在幾乎所有方面的功能與使用者體驗的提升。隱私權亦可透過終端裝置本地推論的運行而獲得改善,因為只有最少量的使用者資料及感測器資訊會上傳至雲端。

機器學習與智慧型裝置的交會解放了消費性電子產品新一波的創新。然而最佳的機器學習網路處理需求以及低功率處理器效能之間還有極大的差距。目前的解決方案是運用裝置收集並廣播感測器的資料至雲端,而高功率、專用的機器學習處理器則在雲端負責推論,並在完成後將結果透過網際網路回傳至使用者裝置。這個方法雖能提供機器學習的功能,但亦有極明顯的弱點。裝置有限的能量必須消耗一部分以保持持續的網路連線;雲端運算的延遲亦會限制了裝置對推論的應用,並且會破壞使用者體驗。而傳送原始資料的需求則讓裝置難以維護資料安全,並造成隱私權的顧慮。整體而言,這些限制了智慧裝置對機器學習的實際運用。

》想看更多內容?快來【免費加入會員】【登入會員】,享受更多閱讀文章的權限喔!
研討會專區
主題式電子報
熱門文章